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F igure  4.Dependence of vaporization rate on fugacity potential 

defining t h e  p r o c e s s  of hea t  t ransfer  from a horizontal  
p l a t e  facing downward (7). 

T h e  uni t  vaporizat ion r a t e  i s  plot ted a g a i n s t  fugaci ty  
potent ia l  for each  liquid in  F igure  4 and t h e  d a t a  can b e  
well correlated b y  t h e  following equat ion:  

e = C. Af”” (9) 
where t h e  va lue  of C v a r i e s  from liquid + ?  l iquid.  

Liquid C 

Water 6.58 
Carbon tetrachloride 2.96 
Ethyl alcohol 1.80 
Benzene 1.33 

It i s  an t ic ipa ted  that  cont inuat ion of t h i s  part of t h e  
inves t iga t ion  under sub- and superatmospheric  pressure  
wil l  provide valuable  information, from which more general  
re la t ions  can be  derived. 

NOMENCLATURE 
Cp = h e a t  capacity at constant pressure, B.t.u. per OF. 

D = diffusion coefficient, sq. feet per hour 
d = characteristic dimension, feet 

lb. 
e = unit vaporization rate, ___ 

hr. sq. ft. 
f = fugacity, atm. 
g = acceleration due to  gravity, ft./sec.’ 
h = h e a t  transfer coefficient, B.t.u./hr. sq. ft.  OF. 
k = thermal conductivity, B.t.u./ft. ‘F./ft. 

kg = mass transfer coefficient, lb. moles/hr., sq. ft. atm. 
P = total pressure, atm. 

Upper Explosive Limits of Cumene 

JUDSON C. BUTLER’ AND WILLIAM P. WEBB 
California Research Corp., Richmond, Cal i f .  

I n common with most other hydrocarbons,  cumene forms 
explos ive  mixtures  with air .  T h e s e  explos ive  mixtures a r e  
limited or rendered nonexplosive in  three  ways :  by di lut ing 
with a i r  unt i l  t h e  mixture i s  too  l e a n  t o  explode (lower 
limit), by di lut ing with fuel  until t h e  mixture is t o o  rich t o  

‘Deceased, March 30, 1956. 

pf = film pressure factor, atm. 
R = gas constant,oatm. CU. ft./(lb. mole.) OR 

t =temperature, F. 
u = convective velocity, feet per second 
p = viscosity of air film, lb./ft. hr. 

Ib 
CU. ft. 

p = density of air film, -’- 

1 
F. 

6 = reciprocal average temperature, -0- 

Af = fugacity potential of vapor, atm. 
%?I = temperature difference between interface and bulk air, OF. 

6 = unique function defined by Equations 1 and 2 

Dimensionless Groups 

2 = Prandtl number 
k 

= Schmidt number 

= Grashof number 

g , @ - h m . d J . p ’  PD 

Pa 
g . d J . p I . k - 1  
. .~ ’’ = Grashof number for  mass transfer 

h d  
- = Nusselt number 
k 

LL2 

kg. R .  T. pf + d 
D * P  = Nusselt number for mass transfer 

9 = Reynolds number 
11 
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explode (upper limit), and by di lut ing with a n  inert sub-  
s t a n c e  until there  i s  insuff ic ient  oxygen t o  explode.  

Previously,  only a small  amount of information w a s  
ava i lab le  concerning t h e  explos ive  l imits  of cumene (1-3), 
and t h i s  information pertained only t o  t h e  limit a s  a func- 
t ion of t h e  oxygen-nitrogen-cumene rat io  a t  a tmospheric  
pressure.  However, i t  i s  impossible  to predict  t h e  e f fec t  of 
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pressure  or temperature  c h a n g e s  upon e x p l o s i v e  l imits .  
Consequent ly ,  t h e  present  inves t iga t ion  w a s  undertaken t o  
determine t h e  e x p l o s i v e  l imi t s  of dry and wet cumene  under 
var ious condi t ions  of temperature ,  p ressure ,  and  oxygen 
content .  

To carry on  t h i s  work, i t  w a s  n e c e s s a r y  t o  d e s i g n  and  
cons t ruc t  equipment c a p a b l e  of furnishing a des i red  g a s e o u s  
mixture a t  e leva ted  p r e s s u r e s  and of determining whether  
t h i s  mixture w a s  explos ive .  Previous  inves t iga tors ,  notably 
t h o s e  of t h e  United S t a t e s  Bureau of Mines, (4 ,  3, h a v e  
s t u d i e d  t h e  var ious  fac tors  a f fec t ing  t h e  l imi t s  of flamma- 
bility. T h e  most  important fac tors  are:  method of igni t ion,  
direct ion of f lame propagat ion,  d imens ions  of t h e  react ion 
v e s s e l ,  humidity, p ressure ,  temperature ,  and turbulence.  
In t h e  present  work, t h e  f i rs t  th ree  fac tors  were he ld  con- 
s t a n t  and t h e  l a s t  four were inves t iga ted .  

APPARATUS 
An appara tus ,  incorporat ing t h e  f indings and recommen- 

da t ions  of t h e  Bureau  of Mines and des igned  t o  g ive  maxi- 
mum range  t o  t h e  explos ive  mixtures ,  w a s  cons t ruc ted .  A s  
f inal ly  deve loped ,  t h e  appara tus  c o n s i s t e d  e s s e n t i a l l y  of 
f ive  par ts :  

I. A g a s  feed system b y  which various mixtures of two g a s e s  
could be introduced into the system from compressed g a s  cy l -  
inders. 

2. A saturator bomb in which the g a s  stream w a s  saturated 
with the vapor of the t e s t  liquid or liquids. 

3. A combustion chamber in which the gas  vapor w a s  ignited 
by a spark and flammability w a s  measured. 

4. A condenser system for condensing and col lect ing the vapor 
from the g a s  streams. 

5. A constant pressure control regulator and a wet-test meter 
for maintaining the pressure and measuring the volume of g a s  
flowing through the system. A schematic diagram of th i s  flow 
system i s  given in Figure 1. 

T h e  g a s  feed  s y s t e m  c o n s i s t e d  of a cyl inder  of high 
pressure  ni t rogen and a cy l inder  of high pressure  a i r ,  e a c h  
connec ted  t o  a common t e e .  V a l v e s  in  e a c h  l ine  permitted 
var ia t ions  in t h e  flow of t h e  two g a s e s ,  supplying var ious  
mixtures. T h e  mixed g a s e s  were  p a s s e d  through a smal l  
or i f ice  (a n e e d l e  valve)  to  provide further mixing. G a g e s  
were ava i lab le  t o  measure  the  pressure  drop a c r o s s  t h i s  
va lve .  In prac t ice ,  t h i s  pressure  drop var ied from 100 t o  
400  pounds per  s q u a r e  inch gage.  Before t h e  mixed com- 
pressed  g a s  p a s s e d  i n t o  t h e  sys tem,  a smal l  amount w a s  
cont inuously ana lyzed  by a P a u l i n g  oxygen ana lyzer .  

T h e  high pressure  g a s  mixture then  p a s s e d  through a 
double va lve  sys tem i n t o  t h e  sa tura tor  bomb. T h e  g a s  w a s  
piped t o  t h e  bottom of t h e  bomb, where i t  p a s s e d  through a 
f r i t ted s t e e l  p la te  and bubbled up through t h e  t e s t  liquid. 
T h e  temperature  of t h i s  liquid w a s  maintained by a n  e l e c t r i c  
heater ,  wound around t h e  bomb. T h e  temperature  of t h e  
liquid w a s  measured  by t h r e e  thermocouples  loca ted  a t  
var ious d i s t a n c e s  from t h e  bottom of t h e  saturator .  Ad- 
d i t iona l  temperature  readings  were  made of the  bomb c a s i n g  
by a t tached  thermocouples .  T h e  pressure  and temperature  
of t h i s  sa tura tor  determined t h e  mole per c e n t  of t h e  l iq-  
uid in  t h e  outgoing vapor. 

From t h e  saturator ,  t h e  vapor  p a s s e d  through h e a t e d  
l i n e s  i n t o  t h e  combust ion chamber. T h i s  v e s s e l  w a s  also 
a pressure  bomb, 2.5 i n c h e s  in diameter  and 32 i n c h e s  long, 
hea ted  t o  a temperature  10 'F .  above t h e  sa tura tor  tempera-  
ture  t o  prevent  condensa t ion .  Connected t o  t h i s  bomb were  
a drain va lve ,  a rupture d isk ,  a maximum pressure  ind ica t -  
ing  gage ,  and a n  inlet  valve.  About 8 i n c h e s  above  t h e  
bottom, a spark plug w a s  inser ted  in a n  opening in t h e  s i d e  
of t h e  v e s s e l .  T h e  two e l e c t r o d e s  of t h e  spark  plug were  
connec ted  by a s m a l l  p i e c e  of platinum wire  (B. & S. gage  
No. 36). A s m a l l  amount of gun co t ton  w a s  a l s o  wound 
around o n e  of the  e lec t rodes .  T h e  e l e c t r i c a l  connect ion t o  

Figure 1. Schematic diagram of explosive l imits apparatus 

t h e  spark  plug w a s  regulated f r o m  i n s i d e  t h e  control  room. 
Eighteen  i n c h e s  above  t h e  spark  plug wel l  there  w a s  an-  
other  opening  i n  which w a s  inser ted  a plug holding a col-  
lodion s t r ip .  If t h i s  s t r i p  of col lodion w a s  burned during 
a n  experiment ,  t h e  t e s t  mixture w a s  cons idered  explos ive .  
T h e  temperature  of t h e  vapors  in  t h e  combust ion chamber  
w a s  measured by a thermocouple  loca ted  i n  t h e  cent ra l  
thermowell. T h i s  same thermocouple measured t h e  tem- 
perature  r i s e  occurr ing during a n  explosion.  

After leav ing  t h e  combust ion chamber ,  t h e  vapor p a s s e d  
through a 4-foot water-cooled condenser ,  where t h e  vapor- 
ized  l iquid w a s  condensed  and co l lec ted  i n  a t rap.  An 
out le t  n e e d l e  v a l v e  on t h i s  t rap  permitted emptying, even  
during a run or when operat ing under high pressure .  

From t h e  condenser  sec t ion  t h e  g a s  s t ream p a s s e d  
through another  double-valve s y s t e m  into t h e  control  room 
where t h e r e  w a s  an automatical ly  control led cons tan t  pres-  
s u r e  valve.  T h i s  valve maintained t h e  sys tem a t  any de- 
s i r e d  p r e s s u r e  up t o  150 pounds per  s q u a r e  inch gage.  T h e  
ex i t  g a s  from t h i s  va lve  w a s  a t  a tmospheric  pressure  and  
w a s  measured by a wet- tes t  meter. T h e  e s c a p e  g a s e s  w e r e  
then vented t o  t h e  atmosphere.  Before  vent ing,  t h i s  g a s  
could b e  ana lyzed  for oxygen content  i f  des i red .  

All t h e  cont ro ls  n e c e s s a r y  for regulat ing t h e  appara tus  
during an experiment were  loca ted  in a control  room. T h e  
res t  of t h e  appara tus  w a s  loca ted  within a concre te  high 
pressure  cell. T h u s ,  i t  w a s  not  n e c e s s a r y  for t h e  operator 
t o  b e  near  t h e  bombs during high p r e s s u r e  and ignition. A 
sys tem of mirrors permitted t h e  operator  t o  view t h e  out- 
s i d e  p r e s s u r e  g a g e s  from t h e  s a f e t y  of t h e  control  room. 

EXPERIMENTAL PROCEDURE 
T h e  sa tura tor  bomb w a s  charged with 2000 t o  3000 ml. of 

t e s t  l iqu id ,  which c o n s i s t e d  of cumene  or cumene a n d  water .  
Phenol ,  0.05 weight  % of cumene,  w a s  added t o  prevent 
oxidat ion.  While t h i s  mater ia l  w a s  coming u p  to tempera-  
ture ,  a f resh spark  plug and col lodion s t r i p  w e r e  inser ted  
in t h e  combust ion chamber .  T h e  appara tus  w a s  then pres- 
sur ized with t h e  t e s t  g a s  which w a s  al lowed t o  flow through 
t h e  sys tem until a dynamic equilibrium w a s  reached.  At 
equilibrium condi t ions ,  t h e  combust ion chamber  w a s  swept  
out with s i x  t i m e s  i t s  volume of t e s t  mixture. 

After t h e  sweepout  t ime,  t h e  t e s t  mixture w a s  ana lyzed  
by measuring t h e  amount of l iquid co l lec ted  in t h e  t rap  
whi le  a cer ta in  volume of g a s  p a s s e d  through t h e  appara- 
tus .  T h i s  a n a l y s i s  w a s  compared with tha t  predicted from 
t h e  temperature  and pressure  of t h e  sa tura tor .  When t h e s e  
two v a l u e s  agreed ,  t h e  saturator ,  f i r ing chamber, and con-  
d e n s e r  were  i s o l a t e d  and t h e  spark  plug w a s  ac t iva ted .  

E x p l o s i o n s  were  indicated by a temperature  a n d  pressure  
r i se .  However, t h e  f inal  cr i ter ion w a s  t h e  condi t ion of t h e  
col lodion s t r i p  placed near t h e  top  of t h e  chamber. A t e s t  
w a s  cons idered  a n  explos ion  if t h e  col lodion s t r i p  w a s  
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Figure 2. Effect  of temperature and pressure upon upper 
explosive l imits of cumene and air  

completely burned, on t h e  l imit  if i t  w a s  par t ly  burned, and 
a nonexplosion i f  it  w a s  in tac t .  T h e  following experimental  
da ta  were co l lec ted  on e a c h  run: 

Temperature of saturator contents (three points) 
Temperature of inside of combustion chamber 
Pressure 
Rate of gas  flow at atmospheric pressure 
Oxygen content of entrance and exit g a s e s  
Milliliters of liquid collected from condenser trap 
Cubic feet of g a s  passed while liquid samples  were collected 
Pressure r i se  (if any) 
Temperature rise (if any) 
Condition of collodion strip after ignition 

DISCUSSION OF RESULTS 
Calibration Runs. Before work on t h e  cumene sys tems,  

w a s  begun,  t h e  r e s u l t s  ob ta inable  by t h e  present  appara tus  
were compared with t h o s e  obtained from other  appara tus ,  
by determining t h e  upper explos ive  l imi t s  of air-benzene a t  
normal pressure  and  of air-propane at  high pressure .  T h u s ,  
i t  w a s  found tha t ,  a t  a tmospheric  pressure ,  t h e  upper limit 
of benzene  mixtures occurred a t  7.3 mole % of benzene .  
T h i s  compares  favorably with t h e  accepted  v a l u e  of 7.1 
mole % of b e n z e n e  (5). At 100 pounds per square  inch  
gage ,  t h e  upper limit of propane mixtures occurred between 
22.0 and 23 .7  mole % of propane, whereas  t h e  Bureau of 
Mines (6) va lue  i s  25.0 mole % of propane. 

Cumene-Air System. Ini t ia l ly ,  t h e  e f fec t  of pressure  
upon t h e  upper explos ive  l imi t s  of t h e  cumene-air sys tem 
w a s  s tudied .  F i g u r e  2 is a plot  of t h e  bracket ing va lues  a t  
s e v e r a l  temperatures  and pressures .  T h e  appara tus  fur- 
nished sa tura ted  mixtures  only; therefore ,  in t h i s  graph t h e  
temperatures  and  pressures  a r e  those  of t h e  saturator  bomb. 
T h e  area  t o  t h e  left of t h e  curve  in F igure  2 is t h e  region 
of explos ive  mixtures, a s  determined by sa tura t ion  pressure  
and temperature. T h i s  region e x t e n d s  unt i l  a lower limit 
( e x c e s s  oxygen) i s  reached a t  a lower temperature. How- 
ever ,  t h i s  lower limit w a s  not inves t iga ted  in  t h e  present  
s tudy.  At a tmospheric  pressure  and  sa tura t ion  tempera- 
tu res  above 174'F., t h e  vapor i s  too  rich in  cumene t o  
explode; a t  100 pounds per  s q u a r e  inch  gage ,  t h e  sa tura t ion  
temperature  n e c e s s a r y  t o  obtain a fuel-rich, nonexplosive 
mixture is 295'F. T h e s e  v a l u e s  correspond t o  mixtures 
containing 8.8% of cumene-91.2% of a i r  a t  a tmospheric  
pressure  and 10.8% of cumene-89.2% of a i r  at 100 pounds 
per  s q u a r e  inch  gage.  Several  intermediate  va lues  were 
a l s o  obtained and a r e  ind ica ted  in  F i g u r e  2. 

T h e s e  resu l t s  c a n  a l s o  b e  e x p r e s s e d  a s  t h e  amount of 
sa tura t ion  pressure  n e c e s s a r y  to  obtain an explos ive  mix- 
ture  a t  a given saturat ion temperature. T h u s ,  a t  200 'F.  a 
pressure  of 1 2 . 5  pounds per  square  inch  gage i s  n e c e s s a r y  
to obtain an explos ive  mixture; whereas ,  a t  298 'F.  a pres- 

sure  in e x c e s s  of 108 pounds per  square  inch gage is 
necessary .  In a l l  c a s e s ,  t h e  va lues  given a r e  valid only 
for sa tura ted  vapor mixtures .  

Cumene-Air-Water System. T h e s e  dry cumene experiments  
gave a n  upper explos ive  limit va lue  at  var ious pressures  
a s  a b a s e  curve  for further work. However, a s  water 'nar-  
rows t h e  explosive l imits  of many hydrocarbons, a s tudy  t o  
determine t h e  e f fec t  of water  upon t h e  upper explos ive  
l imits  of cumene w a s  undertaken.  B e c a u s e  of t h e  d e s i g n  of 
the  equipment, only mixtures  sa tura ted  with both water  and 
cumene were  obtainable .  

F igure  3 i s  a plot of t h e  bracket ing va lues  a t  s e v e r a l  
temperatures  and pressures .  A s  usua l ,  water  lowered the  
upper explos ive  limit of cumene-air mixtures from t h e  v a l u e s  
obtained with dry cumene and  air .  For example, a t  a tmos-  
pheric  pressure  a sa tura t ion  temperature above  1 7 4 ° F .  i s  
necessary  to  render a dry cumene-air  mixture nonexplosive;  
with wet  cumene mixtures ,  a temperature  of only 1 4 0 ° F .  or 
above i s  n e c e s s a r y  t o  g ive  a nonexplosive mixture. 

Again, increased  pressure  ra i sed  t h e  upper explos ive  
limit. For  example,  a t  a tmospheric  pressure ,  t h e  limiting 
mixture contained 3.9% of cumene;  but, a t  70 pounds per 
square inch gage,  t h e  va lue  increased  t o  5.7% of cumene. 
Expressed  in terms of sa tura t ion  temperature and pressure ,  
a wet vapor mixture below 1 4 0 ° F .  wil l  explode at a tmos-  
pheric  pressure,  whereas  a t  2 1 4 ° F .  a pressure in e x c e s s  of 
50 pounds per square  inch gage  i s  necessary  t o  form a n  
explos ive  mixture. T h u s ,  t h e  presence  of water  i n c r e a s e s  
the  safe ty  of the  cumene oxidat ion by narrowing t h e  region 
of explos ive  mixtures. 

Ignition under F low Conditions. B e c a u s e  turbulence a f -  
f e c t s  t h e  flammability of a g a s e o u s  mixture, comparat ive 
runs were made on a s t a t i c  and dynamic sys tem.  It w a s  
found that ,  a t  238 'F.  and  85 pounds per  square  inch gage  
and with t h e  air f lowing at  t h e  l inear  ra te  of 0.1 foot  per 
second through t h e  combust ion chamber, a mixture cons is t -  
ing of 5.8% of cumene,  28.4% of water, and 65.8% of a i r  
would explode,  a l though mixtures  of t h e  s a m e  composi t ion 
were nonexplosive under s t a t i c  condi t ions.  T h e  tempera- 
ture  and pressure  r i s e  indicated tha t  th i s  mixture w a s  very 
c l o s e  t o  the dynamic upper limit. However, t h i s  experiment 
d o e s  ind ica te  that  t h e  upper explos ive  l imits  a r e  increased  
s l ight ly  by flow. 

Diminished Oxygen Systems. T h e  foregoing work on ex-  
plosive l imits  of cumene-air sys tems indicated a need to  
know more about  t h e  e f fec t  of oxygen on the  explosive 
l imits  of cumene. Consequent ly ,  determinat ions were made 
of t h e  explos ive  l imits  of both dry and wet cumene under 
condi t ions of diminished oxygen content .  In t h i s  manner, 
th ree  component diagrams (F igures  4 and 5 )  of the  explos ive  
region were obtained both at  a tmospheric  pressure  a n d  at  
80 pounds per square  inch gage.  
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V A L U E  (FROM F I G .  2) A 

MOLE PERCENT MOLE PER C E N l  

MOLE PER CENT OXYGEN 

Figure  4. Exp los ive  l imits of dry cumene-oxygen-nitrogen 

T h e  c u r v e s  in  F i g u r e s  4 and 5 are  upper  limit curves  
only, e x c e p t  for t h e  one at  80 pounds per square  inch  gage  
in the  wet s y s t e m .  In t h i s  c a s e  enough da ta  were  co l lec ted  
t o  plot  t h e  e n t i r e  e x p l o s i v e  a rea ,  bounded by both t h e  upper 
and lower limit rurves.  In  t h e  remaining c a s e s ,  t h e  upper 
limit curve  w a s  car r ied  only t o  t h e  turning point a s  shown.  
Presumably  the  lower limit boundary is a s t ra ight  l ine  
paral le l  to  t h e  left-hand e d g e  of t h e  t r iangular  diagrams and  
of t h e  s a m e  cumene concentrat ion a s  t h e  turning point. 
However, t h i s  region w a s  not  examined.  

F igure  4 i s  a ternary diagram of t h e  explos ive  l imi t s  
of t h e  s y s t e m  cumene-air-nitrogen. T h e  inner curve is t h e  
upper l imit  of t h e  explos ive  region a t  a tmospheric  pressure .  
T h e  sharp  break in t h i s  curve  at about  4.0% of cumene i s  
surpr is ing and may b e  d u e  t o  a difference in the  na ture  of 
the  oxidat ion react ion a b o v e  and below t h i s  point. At a t -  
mospheric  pressure ,  dry g a s e o u s  mixtures  containing l e s s  
than 10% oxygen a r e  no longer  explos ive ,  r e g a r d l e s s  of t h e  
cumene concentrat ion.  

T h e  outer  curve of F i g u r e  4 is t h e  upper limit of t h e  
explos ive  region at  80 pounds per  square  inch gage.  A s  
expected,  t h e  e x p l o s i v e  a r e a  a t  high p r e s s u r e  is greater  
than t h e  e x p l o s i v e  area a t  a tmospher ic  pressure .  T h e  
minimum oxygen required for combust ion a t  80 pounds per 
s q u a r e  inch gage  w a s  only 8.5%. 

F i g u r e  5 is a ternary diagram of the  explos ive  l imi t s  
of t h e  sys tem cumene-oxygen-nitrogen-water a t  t h e  s a m e  
two pressures .  In t h e s e  c a s e s  the  two inert s u b s t a n c e s  
(nitrogen and water) a r e  plotted a s  one component ,  a l though 
only the  nitrogen i s  independent .  T h e  molar amount of water  
i s  direct ly  proportional to  t h e  molar amount of cumene.  
B e c a u s e  of th i s ,  F i g u r e  5 i s  valid only for s y s t e m s  s a t -  
urated with both water  and cumene a t  a given temperature  
and pressure .  

T h e  inner  curve  is t h e  upper l imit  of t h e  e x p l o s i v e  re- 
gion at  a tmospher ic  pressure.  T h e  a r e a  within t h e  outer  
curve i s  t h e  explos ive  region a t  80 pounds per square  inch 
gage.  T h e s e  two curves  c lear ly  i l lus t ra te  t h e  widening of 
the e x p l o s i v e  l imits  t h a t  t a k e s  p lace  with a n  increase  in  
pressure .  T h e  over-all e x p l o s i v e  a r e a  of t h e s e  wet mix- 
tu res  i s  somewhat  l e s s  than tha t  of the dry mixtures  
(Figure 4). 

A t  a tmospher ic  pressure ,  t h e  minimum amount of oxygen 
n e c e s s a r y  for combust ion i s  11.5%, whereas  only 9.4% i s  
required a t  80 pounds per square  inch gage.  T h e s e  minimum 
oxygen v a l u e s  a r e  somewhat  higher  than t h o s e  of t h e  dry 
mixtures. T h u s ,  moisture  tends  t o  d e c r e a s e  t h e  e x p l o s i v e  
a r e a  by lowering t h e  upper  limit and increas ing  t h e  mini- 
mum oxygen n e c e s s a r y  to  a f fec t  combust ion.  

B e c a u s e  t h e  d a t a  u s e d  t o  cons t ruc t  t h e  ternary d iagrams 
were obtained a t  c o n s t a n t  pressure ,  c h a n g e s  in sa tura t ion  
temperature  were n e c e s s a r y  t o  vary t h e  amount of cumene.  

T h u s ,  t h e  points  of the curve  were  obtained a t  different  
temperatures .  T h e s e  temperatures  var ied from 96" to  
172'F. in t h e  dry c a s e  and from 94"  to  1 4 2 ° F .  in the  wet 
c a s e .  

Temperature and Pressure Rise. In addi t ion t o  other 
d a t a ,  t h e  p r e s s u r e  r i se  and t h e  temperature  r i se  developed 
during a n  explos ion  of t h e  cumene mixtures  were  measured.  
B e c a u s e  most  exper iments  were conducted near t h e  l imi t s ,  
only moderate  temperature  and pressure  rises were ob- 
se rved .  P r e s s u r e  r i s e s  of 2 to  20  pounds per  s q u a r e  inch  
gage were common; however, in  one c a s e  a pressure  of 260 
pounds per  s q u a r e  inch gage  w a s  reached f r o m  an in i t ia l  
p ressure  of 115 pounds per  s q u a r e  inch  gage. In most 
c a s e s ,  the temperature  r i s e  w a s  from 0 to  5 ° F . ;  although, 
in t h e  c a s e  mentioned a b o v e ,  a 30°F. r ise  w a s  noted.  T h e  
amounts of t h e  temperature  and p r e s s u r e  r i s e  are probably 
related t o  the  s i z e  and shape  of t h e  combustion chamber  
and  are  not a b s o l u t e  v a l u e s  for the  mixture concentrat ion.  

PROBABLE ERRORS 

In addi t ion t o  t h e  regular  errors  of mechanical  inaccuracy  
(pressure and temperature  readings) ,  unique errors  a s s o -  
c ia ted  with t h i s  work include t h e  u s e  of a c l o s e d  sys tem,  
temperature of t h e  combust ion chamber ,  and the cumene 
employed. 

T h e  explos ion  t e s t s  were a l l  conducted in a n  enc losed  
sys tem.  T h u s ,  a p r e s s u r e  w a s  built up within t h e  appara-  
t u s  during e a c h  pos i t ive  experiment .  In  t h o s e  n e a r  l imit ing 
c a s e s  where par t ia l  burning would occur ,  t h e  p r e s s u r e  
built up by t h i s  burning may h a v e  been suff ic ient  t o  c a u s e  
complete  burning; hence ,  t h e  mixture would b e  reported 
explosive.  T h i s  error may lead t o  s l igh t ly  wider  l imits  
than would b e  obtained with a n  open or a no-pressure r i s e  
sys tem.  

Another factor  affect ing t h e  explodabi l i ty  of mixtures 
i s  t h e  temperature  of the  combust ion chamber. B e c a u s e  t h i s  
w a s  kept 10°F. hot te r  t h a n  the saturator ,  t h e  t e s t  mixture 
w a s  a l w a y s  igni ted at  a temperature  somewhat greater  than  
that  used t o  vaporize t h e  l iquid.  T h i s  h e a t  may a l s o  c a u s e  
widening of t h e  l imi t s ,  b e c a u s e  some near-limiting mixtures 
a t  sa tura t ion  temperature  burn at  t h e  e leva ted  temperature  
of the  combust ion chamber .  However, in the  temperature  
region inves t iga ted ,  th i s  effect  appears  to b e  s l igh t  (7, 8). 

Dow commercial  grade cumene  w a s  used  i n  making t h e s e  
determinat ions.  T h i s  hydrocarbon ana lyzed  93.3% of cu-  
mene by freezing point. T h e  p r e s e n c e  of s l igh t ly  more 
volat i le  impuri t ies ,  s u c h  a s  e thylbenzene ,  may h a v e  lowered 
the  upper e x p l o s i v e  l imi t s  somewhat ,  b e c a u s e  more hydro- 
carbon would b e  present  i n  t h e  vapor than  was  ca lcu la ted  
for any given temperature .  

NITROGEN -WATER 

E X T R A P O L A T E D  

M O L E  PER CENT 
NITROGEN - WATE 

OXYGEN 20 17 5 I 5  12 5 I O  

M O L E  PER C E N T  OXYGEN 
Figure 5. Exp los ive  limits of wet curnene-oxygen-nitrogen 
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T h e  over-all n e t  e f fec t  of t h e  errors  examined in t h e  
preceding paragraphs i s  bel ieved to  b e  small a n d  on t h e  
conserva t ive  s ide.  

CONCLUSIONS 
T h e  primary purpose of t h e  present  invest igat ion,  t h e  

def ini t ion of s a f e  operat ing condi t ions  for t h e  a i r  oxidation 
of curnene, w a s  real ized.  By t h e  u s e  of the  appara tus  
descr ibed,  i t  w a s  p o s s i b l e  t o  find t h e  explos ive  l imits  of 
var ious cumene-air and cumeme-air-water mixtures  a t  el- 
eva ted  pressures .  An i n c r e a s e  in pressure  c a u s e d  a widen- 
ing of t h e  upper l imits  for  both s y s t e m s  s tudied .  Water 
caused  a d e c r e a s e  in  t h e  upper explos ive  limit. 

T h e  d a t a  accumulated a r e  of fundamental in te res t  in t h e  
f ie ld  of hydrocarbon flammability. 
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Sorption of Water Vapor by Thermally Treated Lignite 

at Di f f e rent Re I at ive H u m id i t  ies 

WAYNE R. KUBE 
University of North Dakota, Grand Forks, N.D. 

T h e  mechanism of t h e  coal i f icat ion process ,  by which 
wood products  a r e  transformed through t h e  var ious coa l  
ranks ,  h a s  received at tent ion from numerous inves t iga tors .  
General ly ,  it  i s  bel ieved tha t  t h e  woody material a d v a n c e s  
in rank by a s low chemical  process  cons is t ing  in  part of 
dehydration and decarboxylat ion,  occurr ing over  geological  
a g e s .  

O n e  avenue  of approach t o  b a s i c  coal i f icat ion mechanism 
and an understanding of fundamental coa l  s t ruc ture  h a s  
been a s tudy of t h e  forms and occurrence of moisture as-  
soc ia ted  with t h e  coa l  subs tance .  Gauger  (2) recognized 
that  water w a s  recoverable  from coal from f ive sources ,  
including: 

1. Decomposition of organic molecules  
2. Surface-adsorbed water 
3. Capillary-condensed water 
4. Dissolved water 
5. Water of hydration of inorganic constituents of coal 

Moisture  included in t y p e s  2 ,  3 ,  and 4 h a s  been  s tudied  
by water  vapor sorption-desorption t e s t s  a s  appl ied particu- 
la r ly  to lower rank fue ls ,  which a r e  cons idered  t o  h a v e  
some ge l l ike  propert ies .  L a v i n e  (IO) summarized previous  
work and presented d a t a  on t h e  dehydration-hydration of 
wood and natural l igni te .  Lar ian  and  o t h e r s  ( 9 )  extended 
h e  in i t ia l  invest igat ion by tes t ing  p e a t  and brown coa l ,  and 

Zromulgated t h e  p o s s i b l e  c lass i f ica t ion  of North American 
fue ls  in  t e r n s  of pore s i z e  a s  determined by t h e  sorpt ion 
s tudies .  Gordon, Lavine ,  and Harrington (3) s tudied  the  
effect  of temperature  and pressure  on sorpt ion of water  va- 
por by l igni te .  Sorption s t u d i e s  of t h r e e  b a s i c  t y p e s  of 
natural lignite-woody, ear thy,  and peaty-were reported 

by T a s k e r  (15) of t h e  Ontario (Canada)  Research  Foundat ion 
for multiple desorpt ion-sorpt ion c y c l e s  wherein s l ight ly  
different sorption charac te r i s t ics  were noted for e a c h  type.  

Several  inves t iga tors ,  among them Klein (6) and more 
recent ly  T e r r e s  (16), showed that  thermal treatment above 
t h e  temperature  required t o  in i t ia te  decarboxylat ion in  ad- 
dition t o  removal of t h e  normally considered moisture  r e  
su l ted  in  ar t i f ic ia l  coal i f icat ion or an acce lera ted  meta- 
morphism which a d v a n c e s  somewhat  t h e  rank of t h e  s o l i d  
fuel t reated.  Kube  (8) exposed s a m p l e s  of North Dakota  
l ign i te  which had  been thermally t rea ted  at  var ious tem- 
peratures  t o  950" F. in  an atmosphere sa tura ted  with water  
vapor a t  room temperature ,  and reported tha t  differences in  
resorption of water  vapor ex is ted ,  depending upon t h e  t reat-  
ing  temperature. 

Interest  in  t h e  fundamental propert ies  of North Dakota  
l igni te  h a s  cont inued a t  a high leve l  b e c a u s e  of t h e  la rge  
reserves  (some 350 bil l ion tons)  of t h i s  low rank fue l  (1). 
T h e s e  d e p o s i t s  represent  a major untapped power and chem- 
ica l  source  in t h e  United S t a t e s .  

T h e  present  report represents  a @ion of t h i s  cont inuing 
interest  and e x t e n d s  t h e  fundamental water  vapor sorption- 
desorption t e s t s  to  thermally t rea ted  l ign i te  represent ing 
l ign i tes  or iginal ly  obtained from a wide a r e a  covering t h e  
North Dakota  depos i t  and i t s  extension into Canada.  

T h e  major ob jec t ives  of t h i s  invest igat ion were to  
determine: 

1. The influence of thermal treatment and type of l ignite on 
sorption of water vapor by lignite. 

2. The approximate increase in coalification caused by thermal 
treatment at temperatures sufficiently high to initiate de- 
carboxylation of the colloidal lignitic substance. 
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